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Abstract: Shared memory architecture for packet switches was normally thought to be unsuitable for building high perform-
ance switches/routers. The main reason lies in their perceived poor scalability. In particular, shared memory architectures are 
typically used to build output-queued switches which are regarded as the best candidate to achieve optimal delay-throughput 
performance. The current trend in router/switch design in both industry and academia favors crossbar-based architectures with 
VOQ techniques because they provide a scalable solution. Although shared memory architectures seem to have the obvious 
scalability disadvantage, crossbar-based architectures have their own intrinsic limitations, such as complex scheduling algo-
rithms and higher bandwidth allocation compared with shared memory architectures of the same capacity. In this survey, we 
investigate the problem of shared memory design in detail and try to find alternatives to solve the scalability bottleneck. In the 
end, we show that combining the crossbar and distributed shared memory architecture is the most promising method for build-
ing scalable high performance switches/routers that can provide quality-of-service support. 
Key words: Shared Memory, Crossbar, Scalable, Space-Memory-Space switch architecture 

1. Introduction 
The basic problem in the core of networking is to 

resolve contentions for shared resources. Usually, 
contention is among distributed parties without prior 
coordination. Switches are the basic building blocks 
for interconnections. The packet switch is a multi-port 
device that routes incoming packets from many input 
ports to the proper output ports, while resolving con-
tentions (multiple packets simultaneously desiring to 
exit through the same output port) by temporarily 
buffering all packets but one, then scheduling their 
departure at an appropriate later time. 

For packet switches, memory strategy is very cru-
cial affecting the performance. The very embodiment 
of resource contentions often happens in memories. In 
the shared memory architecture, if memory bandwidth 
is sufficiently large which means the resource pro-
vided is enough, contentions are removed naturally. 
But if we only have limited memory bandwidth which 
means the resource is limited, one possible way is to 
use space division to provide some more resources, 
which is the initial idea of the introduction of crossbar 
based architecture. 

Looking into the development of high performance 
switches/routers, we can find there are three or four 
generations of switch architectures existed in history: 
[1] 

1. Shared memory architecture, as illustrated in 
Figure 1. 

2. Shared medium architecture, as illustrated in 
Figure 2. 

3. Crossbar based switch architecture, as illus-
trated in Figure 3, which can be further cate-
gorized into input-queued (IQ), output-queued 
(OQ) and combined-input-output-queued 
(CIOQ) switches. 
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Figure 1: Shared memory switch architecture 

The fourth generation is all optical switch architec-
ture [2] which is current trend in this coming optic era 
and out of the scope of this survey. 

Contemporary researchers mainly focus on cross-
bar based architectures and design many correspond-
ing scheduling algorithms for them varying from sim-
ple to complicate. The CIOQ router is frequently re-
ferred as an abstract model for crossbar based routers: 
at one extreme is input queuing, at the other extreme is 
output queuing, and in between there’s a continuum of 
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performance as the speedup is increased from 1 to N 
(where N is the number of inputs.) The most challeng-
ing task in crossbar based routers is to design efficient 
and fast scheduling algorithms for them. There are 
rich and growing theories and practical implementa-
tions for CIOQ routers, such as PIM [25], iSLIP [10], 
DRRM [4], FIRM [3], static round robin (SRR) [15] 
and so on …  
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Figure 2: Shared Medium switch 
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Figure 3: Crossbar based switch 

While researchers in academia favor crossbar 
based architecture, shared memory architecture is still 
commonly used in industry, with both IBM Corp. and 
Applied Micro Circuits Corp. (AMCC) shipping since 
1992 [5]. Most recently, a startup company called 
Terachip released its main product – a 160 Gbps 
switch fabric called TCF 16x10 based on shared 
memory architecture [6]. As we can see, shared mem-
ory architecture does not fade away in high perform-
ance switches; instead it always finds its stand in all 
the production lines from low to high ends. 

So, what is the potential advantage of shared 
memory architecture over crossbar based switches? 
Switch fabric developed using a crossbar architecture 
requires an off-chip scheduler to control the move-
ment of packets across the backplane [21]. In acade-
mia, we always assume we can devise some compli-
cated scheduling algorithms for crossbar to achieve 
100% throughput and small delay, while in real im-

plementation we need hardware to accomplish these 
algorithms. The scheduler chip has been one of the big 
challenges for the crossbar approach [22]. Addition-
ally, the scheduler requires tight synchronization be-
tween the switch and line cards. While for the shared 
memory architecture, the memory itself performs as a 
switch. In fact, scheduling in shared memories is very 
trivial and straightforward. 

In the shared memory switch, the center of the 
switch fabric is a shared memory that contains queues 
for different output ports. Incoming packets are moved 
into the shared memory fabric device as quickly as 
possible [20]. Packets are then scheduled out of the 
shared memory according to the order of their depar-
ture times. 

However, shared memory architecture is criticized 
as non-scalable. The basic reason is that, as shown in 
Figure 1, the bandwidth requirement of the shared 
memory is 2NR [29], which scales linearly with the 
number of inputs N and the line rate R. We will look 
into some techniques to make the shared memory 
scalable with the number of inputs and even scalable 
with the increasing line rate. 

Crossbar and shared memory can both perform the 
switching functions. It will benefit if combining them 
together, taking the bandwidth and power advantages 
from shared memory and scalability of crossbar archi-
tecture. The most suitable candidate is the multi-stage 
architecture called space-memory-space (SMS) 
switch. The basic idea is to make all the stages of this 
architecture take part in the switching functions. Al-
though there have been much literature discussing 
memory-space-memory (MSM) structure, one short-
age of this architecture is that the memories used are 
not shared, thus losing the functions of switching. 

The rest of this survey is organized as follows: We 
first survey on the popular crossbar based architecture 
with VOQ techniques. Then we discuss heavily on 
shared memory architecture and how to make it prac-
tical. In the end, we combine crossbar and shared 
memory to build scalable shared memory switch ar-
chitecture. 

2. Crossbar based architecture 
With the growing traffic demand of the Internet, 

one challenging requirement facing the design of high 
performance switches/routers is that they should be 
scalable [24]. By saying to be scalable, we mean the 
following: 

1. The physical access time of each individual com-
ponent of the switches is independent on the 
number of input ports. 

2. The complexity of scheduling algorithms (if 
needed) for switches does not scale with the num-
ber of input ports significantly. 

It is obvious to see that the shared memory archi-
tecture as shown in Figure 1 is not scalable, since it 
requires a memory bandwidth of 2NR which scales 
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linearly with the number of input ports. One possible 
and most favorable solution by researchers is to use 
crossbar as the switch fabric, as illustrated in Figure 3, 
thus by dividing memories into two stages and making 
them non-shared, memory bandwidth requirement can 
be significantly reduced to 2R. 

 
Figure 4: A configuration of a 4x4 crossbar switch-
ing fabric 

Crossbar is normally made of N2 switching points. 
Figure 4 shows a 4x4 crossbar switching fabric with 
16 switching points. By allowing at most one switch-
ing point in each row and each column to be turned 
on, any permutation of the input ports can be mapped 
into one configuration of the crossbar. For example, 
Figure 4 represents four input-output pairs of (1, 1), 
(2, 4), (3, 2) and (4, 3). 

Although resource contentions are now transferred 
to the crossbar switching fabric, we can distribute the 
contentions into N2 switching points to make sure no 
components here operate faster than line rates R. 
Therefore, it is possible to make crossbar based 
switches scalable. If we regard the shared memory 
architecture as time division switching, crossbar based 
switching can be regarded as space division switching 
[1], alleviating time resource contentions by using 
more space resources. 

2.1. IQ, OQ and CIOQ switches 
Crossbar based switch architecture exhibits more 

interesting properties. In general, crossbar based 
switches can be categorized into input-queued (IQ) 
switches, output-queued (OQ) switches and com-
bined-input-output-queued (CIOQ) switches, accord-
ing to the speedups needed in the crossbar switching 
fabric.  

Speedup is a common term used in crossbar 
switches. By saying a speedup of S, we mean that the 
crossbar can move up to S packets from each input 
and deliver up to S packets to each output within a 
time slot. [32] 

If the crossbar operates at a speedup of 1 which 
means at most one packet can reach one output port in 
one time slot, packets can only queue in the input side, 
we call this situation IQ switches. If the crossbar can 
operate at a speedup of N which means the crossbar 
can move up to N packets to one output port in one 
time slot, packets can only queue in the output side, 
and we call this situation OQ switches. In between the 
two extreme situations, if the crossbar’s speedup is 
great than 1 but less than N, we need buffers in both 
input and output sides, and we call this situation CIOQ 

switches. 

2.2. OQ switches emulation 
OQ switches have the optimal delay-throughput 

performance [16]. In addition, nearly all the QoS 
algorithms and AQM schemes assume an OQ switch 
[33]. However, implementing a straightforward OQ 
switch is very challenging since the crossbar needs to 
run N times faster than the line rate which is nearly the 
same situation as in shared memory architecture, thus 
making crossbar based OQ switches only suitable for 
edge routers with limited input ports and low line 
rates. In order to make it scalable, the basic require-
ment is that the speed of the crossbar should be inde-
pendent on the number of input ports. 

On the other hand, research shows that we can use 
CIOQ switches to emulate OQ switches. By saying 
emulating, we means that by feeding the same traffic 
pattern to the ideal OQ switch and CIOQ switch with 
a speedup of k (less than N and independent on N 
hopefully), the output packet sequences of the two 
switches are identical [12]. 

The well-known theorem in [18] shows that: 

A speedup of 2-1/N is sufficient and necessary for 
a CIOQ to emulate an OQ switch. 

2.3. Crossbar architecture with VOQ technology 
Although the theorem above is exciting and ele-

gant, it is impractical in hardware implementation. 
First, it assumes a Push-In-Arbitrary-Out (PIAO) 
queue which is very difficult to implement. Second, 
the scheduling algorithm employs a stable-marriage-
problem algorithm [28] which has rather high com-
plexity. Normally, the more practical way in industry 
is that we always prefer some simple First-In-First-
Out (FIFO) queues and scheduling algorithms with 
less time complexity. 

However, simple memory strategy such as FIFO 
will limit the throughput to around 58% due to the 
notorious HoL blocking problem [7]. To resolve this 
problem, virtual-output-queue (VOQ) concept is pro-
posed as a common practice, as illustrated in Figure 5. 
Rather than maintaining a single FIFO queue for all 
cells, each input maintains separate queues for the 
cells directed to different outputs [15]. VOQ technique 
with proper scheduling algorithm can resolve the HoL 
blocking problem thoroughly. Crossbar architecture 
together with VOQs can abstract the switching prob-
lem into the problem of bipartite matching in graph 
theory. For example, the switching situation in Figure 
5 (a) can be represented using a bipartite graph in 
Figure 5 (b). The scheduling algorithm is required to 
find the maximal matching of the bipartite graph for 
each round of packet transmission. For example, the 
thick lines in Figure 5 (b) represent the maximal 
match for the current traffic request. 

Although VOQ technique solves the HoL blocking 
problem, finding the maximal matching of the bipar-
tite graph is not a trivial task. From graph theory, the 
most efficient centralized algorithm we know till now 
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has the time complexity of O(N2.5) [8], where N is the 
number of linecards. In other words, the centralized 
scheduling algorithms for crossbar based switches 
with VOQs are not scalable, thus becoming the bottle-
neck of performance. In practice, researchers tend to 
devise distributed algorithms to find the maximal 
matching quickly. Most of their algorithms are heuris-
tic algorithms which are hoped to converge to the 
maximal matching quickly, such as PIM, iSLIP, 
DRRM, FIRM, SRR and so on… 

VOQs Output Queues Bipartite Graph
(a) (b)

 
Figure 5: Bipartite graph representation of a traffic 
request. 
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Figure 6: First iteration of the RGA algorithms 

The basic idea of all these heuristic algorithms is 
that they try to behave in a distributed manner. We call 
all these kinds of algorithms RGA (Request-Grant-
Accept) algorithms. A typical RGA algorithm runs as 
shown in Figure 6.  

• Request: First, Each input sends a request to every 
output for which it has a queued cell.  

• Grant: Secondly, if an output receives any re-
quests, it chooses the one that appears next in a 
fixed, round-robin schedule starting from the 
highest priority element. The output notifies each 
input whether or not its request was granted. The 
pointer to the highest priority element of the 
round-robin scheduler is updated using a scheme 
which differs slightly in various algorithms. 

• Accept: If an input receives a grant, it accepts the 
one that appears next in a fixed, round-robin 
schedule starting from the highest priority ele-
ment. The pointer to the highest priority element 
of the round-robin schedule is updated according 
to various algorithms. 

Distribution always causes contention, especially 
in the core of networking where all traffic aggregates. 
All the algorithms stated above, such as RRM, iSLIP, 
DRRM, SRR and FIRM, differ only in the schemes of 
updating the pointers. The original RRM algorithm 
suffers from pointer synchronization. So, its succes-
sors try alternative pointer updating schemes to avoid 
contentions as much as possible. From the simulation 
results, we know that FIRM has the best throughput 
performance under normal traffic conditions [3]. 

3. Making shared memory architecture 
practical 

Shared memory architecture is common in the 
early days of routers when the memory bandwidth is 
much larger than the aggregate line rates [20]. The 
basic structure of a shared memory switch is shown in 
Figure 1. In shared memory architecture, scheduling is 
simple because the memory performs switching natu-
rally. When a packet arrives, it is put into the shared 
memory immediately. When it is time to leave, it 
departs from the memory in time [29]. If the band-
width is large enough, nearly no scheduler is needed 
here.  

No scheduler or less complex scheduler is the most 
attracting point of shared memory architecture. How-
ever, with the introduction of optical fibers, memory 
bandwidth can not catch up with the increasing line 
rates any more. As we have seen in the previous sec-
tion, a straightforward implementation of shared 
memory architecture requires a bandwidth of 2NR 
which scales linearly with the number of input ports. 
We need to use some techniques to make the shared 
memory architecture scalable. We first survey on the 
techniques about cutting down the memory bandwidth 
requirement to line rate R, then on techniques that 
make memory even more scalable with the ever in-
creasing line rates. 

3.1. Parallel memories 
In order to make shared memory architecture scal-

able, we should make the memory bandwidth re-
quirement independent on the number of input ports. 
The technique is to use parallelism. Actually, it is a 
natural idea. If one piece of memory can not meet the 
bandwidth requirements, we use multiple of them. The 
basic idea is shown in Figure 7. 
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Figure 7: Parallel memories shared by all the inputs 

In the Figure above, every single memory in the 
central stage runs at the line rate, which means that in 
one time slot there’s at most one read and on write 
operation performed on one memory [18]. We use m 
memories in parallel to distribute the memory band-
width requirements of 2NR. We defer the details of the 
scheduler S to the next section. Now, we focus on the 
memory requirement in this parallelism strategy.  

When a packet comes in the input side scheduler, it 
will find a free memory to be written in. By saying 
free, we mean the following [13]: 

• The memory is not written by other packets, 
which are up to N-1 packets. 
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• The memory does not contain packets which will 
depart at the same time as this incoming packet, 
which are up to N-1 packets. 

From the pigeon-hole principle, we can see that the 
minimum number of memories required is  

(N-1) + (N-1) + 1 

= 2N-1.  

This number is a little interesting. We have seen 
that in the original straightforward shared memory 
implementations, the number of queues (memories) 
we need to maintain is N (the number of output ports). 
So, we can say that if we use parallelism to distribute 
the memory bandwidth requirements, we need a space 
extension ratio of (2N-1)/N = 2-1/N, which is exactly 
the same as the speedup needed for a CIOQ switch to 
emulate an OQ switch. Note that a shared memory 
switch is naturally an OQ switch. 

Another advantage of this parallel memory tech-
nology is that we can distribute all the memories into 
individual line cards [9]. This will make the switch 
system maintenance more handy and flexible. We 
remind here that although memories are distributed 
into line cards, they are still shared by all the inputs 
and outputs. That is to say, every memory in individ-
ual line cards is accessible by all the inputs and out-
puts. 

Although parallel memories provide us a possible 
way to scale the shared memory switches, the benefit 
does not come for free. It is at the cost of a scheduling 
algorithm. We need an additional scheduling algo-
rithm in the input side to dispatch packets into the free 
memories when they arrive at the input ports. We will 
discuss the algorithm in the next section. 

The output side scheduler is somewhat easy to de-
vise. It just selects the packets which are in their de-
parture times and lets them go. Since packets have 
resolved all of their contentions in the input side al-
ready, no scheduling algorithms are needed in the 
output side. 

3.2. Memory techniques scalable with line rates 
As the line rate keeps increasing, buffers needed in 

routers have to be sufficiently large, according to the 
rule-of-thumb equation: B = RxRTT [30], where R is 
the line rate, RTT stands for round-trip-time and B is 
the buffer needed in the line card. In other words, we 
need large and fast memories to keep up with the 
buffering and switching requirements of high per-
formance routers. Current memory technologies are 
mainly SRAM and DRAM. DRAM offers large capac-
ity to hold many packets, but its random access time is 
too slow. On the other hand, SRAM is fast and might 
be able to keep up with line rates, but are too small to 
be economically viable for large packet buffers. 

3.3. Combined SRAM and DRAM technologies 
One possible and natural means is to use combined 

SRAM and DRAM [11]. The main idea is to build a 

memory hierarchy, where the memory bandwidth is 
increased by reading (writing) multiple cells from (to) 
DRAM memory in parallel. When packets arrive to 
the switch they are stored temporarily in an SRAM, 
waiting their turn to be written into DRAM. At the 
appropriate time (determined by a memory manage-
ment algorithm), multiple packets are written into the 
DRAMs at the same time [11]. We can think of the 
memory hierarchy as a large DRAM containing a set 
of FIFOs; the head and tail of each FIFO is cached in 
a (possibly on-chip) SRAM as shown in Figure 8. The 
SRAM is sized so that whenever the arbiter requests a 
packet, it is always ready in the SRAMs so that it can 
depart in time, regardless of the sequence of requests. 

FIFO centers

Memory Management Alg.

FIFO tails FIFO heads

Large DRAM memory with large Access time T

Ingress SRAM
cache of FIFO tails

Egress SRAM
cache of FIFO heads

Arriving packets Departing packets

b packets

Arbiter

requests

1
2

Q

1
2

Q

1
2

Q

b packets b packets

write access
time = 2T

read access
time = 2T

Figure 8: Combined DRAM and SRAM 

In particular, we have to determine how large the 
SRAM needs to be, and find algorithms for deciding 
when to replenish the SRAM cache so as to minimize 
its size, or to minimize latency. In [34], the authors 
proved that: 

• An SRAM cache of size must be at least Q(b-
1)(2+lnQ). 

With the Most Deficit Queue First memory man-
agement algorithm, an SRAM cache of size 
Qb(2+lnQ) is sufficient, where Q and b are defined as 
in Figure 8. 

3.4. Parallel memories working with packet 
stripping 

Wavelength division multiplexing (WDM) is mak-
ing available long-haul fiber-optic links with very high 
capacity. When the line rate keeps increasing and 
exceeds the bandwidth of single memory, we need 
other techniques to overcome this insufficiency. Still, 
the philosophy of parallelism is used here. It is natural 
to consider using a parallel packet switch (PPS) [12] 
architecture comprised of multiple identical lower-
speed packet switches to form a high performance 
router. 

The incoming stream of packets is spread, packet-
by-packet, by a de-multiplexer across the slower 
packet-switches as shown in Figure 9, then recom-
bined by a multiplexer at the output. As seen by the 
arriving packets, a parallel packet switch (PPS) is a 
single-stage packet switch; all of the buffering is con-
tained in the slower packet switches in the central 
stage [12]. 
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Figure 9: Parallel Packet Switch 

In Figure 9, there are k low-speed packet switches 
in the central stage. Each low-speed packet switch 
operates at a fraction of the line rate R, for example, 
R/k. If we use output-queued switch in the central 
stage, it is desirable to make the whole system emulate 
an OQ switch. Results in [31] show that it is theoreti-
cally possible for a PPS to emulate a FCFS output-
queued packet switch if each OQ switch operates at a 
rate of approximately 2R/k. This simple result is 
analogous to Clos’s theorem [19] for a three stage 
circuit switch to be strictly non-blocking and also the 
ratio of 2-1/N for parallel memories to emulate a 
shared memory switch. 

4. Scalable shared memory architecture 
Shared memory architecture is the basic and 

straightforward form to represent and resolve the 
contentions in networks. The original simple imple-
mentation of shared memory switch, as illustrated in 
Figure 1, is the most ideal switch and naturally an OQ 
switch which does not need any scheduler.  However, 
it is intrinsically non-scalable. In philosophy, it aggre-
gates network resource contentions all in the memo-
ries and by providing sufficient memory (bandwidth) 
resources it performs switching smoothly. When 
memory bandwidth becomes a bottle neck, we need to 
distribute the contention resolutions to other compo-
nents.  

With current technology, packet switching is ac-
complished by two major methods. One is to use 
shared memory, and the other is to use crossbar or 
some other space-division switching technologies 
[31]. However, most work in academia investigates in 
either direction deeply and does not take both advan-
tages of shared memory and crossbar. For example, in 
most shared memory architectures, they do not use 
crossbar, and in most crossbar architectures, memories 
are separated in the input and output sides [10] and not 
shared, thus losing its intrinsic role of switching. 

To build high performance switches/routers with 
large number of input ports, scalability is among the 
most important concerns [23]. In the previous section, 
we surveyed techniques on how to make the memories 
scalable. We left the scheduler dispatching packets 
into the memories yet to be discussed. We survey the 
schedulers to make shared memory architecture fully 

scalable in this section. 

4.1. Space-Memory-Space architecture 
We can see that the scheduler S for shared memory 

architecture in Figure 7 performs an Nx(2N-1) map-
ping basically. It is natural to use a Nx(2N-1) crossbar 
to achieve this task. We know that for crossbar, since it 
is scalable, every component will run at the line rate. 

However, as stated in the previous section, we 
need an additional algorithm to dispatch the incoming 
packets into individual memories according to the two 
free constraints we stated above. We encounter the 
bipartite graph matching problem again. However, the 
situation here is a little different from the one in the 
VOQ scheduling in crossbar switches.  

 
Figure 10: bipartite graph in the parallel shared 
memory 
 

Figure 10 is the bipartite graph representation of 
the memory assignment needed here. A link between 
input i and memory j means that memory j is compati-
ble for i with regards to the second free constraint, 
which is to say, memory j does not contain packets 
bearing the same departure time as packet i. We com-
pare it with the bipartite graph representation in VOQ 
scheduling in Figure 5 (b) to find the essential differ-
ences. 

• This graph is not symmetric, with N nodes in the 
input side and 2N-1 node in the memories side. 

• The degree of every input node i is at least N. 

• The number of maximal matching is always equal 
to N. 

These three properties make efficient algorithms 
for memory assignments a little easier to design. Even 
for the heuristic distributed algorithms, they are 
proved to be faster converging to the maximal match-
ing. The most valuable work was done by Amit et al. 
[13]. 

First, they show that the matching can be com-
puted in O(log2N) time using a parallel computer on a 
CREW PRAM. [13] 

Second, they also follow the same three stage 
paradigm of Request-Grant-Accept (RGA) to design 
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some randomized and scalable algorithms. Further-
more, by pipelining, they proved that their algorithm 
will converge in O(log*N) rounds with each round 
running at a constant time, which is extremely fast 
and, as they claimed, near optimal[14]. 

Shared memory sandwiched by two stages of 
crossbar is usually referred as Space-Memory-Space 
(SMS) architecture. It has the most distinctive per-
formance since all of its parts take part in the role of 
switching. While in some other multi-stage architec-
tures, such as Memory-Space-Memory (MSM), the 
memories employed by them are not shared, thus 
losing the function of switching. 

4.2. Load-balanced packet switches 
SMS architecture has many variants, among which 

there is a recent famous architecture called load-
balanced birkhoff-von Neumann switch [17], as illus-
trated in Figure 11. It uses N VOQ memories in the 
central stage rather than 2N-1 FIFO queues, and most 
creatively, they do not employ any real scheduler in 
both crossbar sides. They just let them act in a prede-
fined iteration way. For example, every input just 
sends packets to the central shared memory in a 
round-robin rotating fashion. The memories they use 
and the packet scheduling they employ are obviously 
scalable. Most surprisingly, they prove that this archi-
tecture can achieve 100% throughput in most traffic 
conditions. Although they start with an initial motiva-
tion of pre-process the traffic with a load balancing 
scheme, it is really a variant of scalable shared mem-
ory architecture. 

Load
Balancing

1

N

1

N

Birkhoff
von-Neumann

Switch

Figure 11: Load-balancing Birkhoff-von Neumann 
switch 

4.3. Central Buffered Clos-network 
Crossbar switching technology is scalable, but the 

cost of crossbar is very expensive. Normally, it is at 
the order of O(N2). This will become even more costly 
when N is extremely large, for example, in the net-
work Point-of-Presences (POP). Some work has been 
led to deal with the economic scalability of the first 
and the third stage of the SMS architecture stated 
above. It employed ideas from Clos-network [19], 
using modular design philosophy.  

In Figure 12, we show a Central Buffered Clos-
network (CBC) switch [16]. This architecture resem-
bles traditional Clos-network except that the central-
stage switches are split into two identical copies with 
memories linking each port pair. Note that the memo-
ries here are fully shared by all the inputs and outputs. 

When a packet arrives in one of the incoming 
ports, it is dispatched into one compatible memory 
immediately. By saying to be compatible, we mean 

exactly the same free constraints as stated in the pre-
vious parallel memory architecture. 
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Figure 12: Central Buffered Clos-network switch 

Mapping this CBC switch architecture into the 
SMS architecture, we can see that it uses a modular 
Clos-network as the first and third space-division 
switching part, thus make it cost effective and more 
scalable. Using the same pigeon-hole principle, the 
authors analyzed that the space extension ratio of m = 
2 – 1/k is sufficient for CBC to emulate an FCFS out-
put-queued switch, where k is the number of the cen-
tral modules needed in CBC architecture and the num-
ber of total input ports N = mxk. 

The number 2 – 1/k is another interesting Figure 
we should pay attention to since it is slightly smaller 
than 2 – 1/N. The smaller extension ratio is achieved 
by using a multi-stage architecture, compared with the 
single stage of switching we surveyed in previous 
sections. 

5. Conclusions and future work 
Shared memory architecture for packet switches 

was common in the early days of networking. With the 
increasing of carrier’s line rates, researchers changed 
their focus to many space-division switching tech-
nologies, such as crossbar based architecture, since 
shared memory architecture was likely to be non-
scalable. However, crossbar based architecture is far 
from perfect for packet switching. Scalable scheduling 
algorithms achieving 100% throughput and less delay 
for crossbar are very challenging to obtain. Usually, 
we can only afford some heuristic algorithms which 
are only suitable in some benign traffic conditions. 

In this survey, crossbar based architecture and its 
corresponding scheduling algorithms are first investi-
gated. After that, we turn to shared memory architec-
ture and explored various techniques to make shared 
memory architecture practical and scalable. In the end, 
we identified current switch design trends that com-
bined space and memory strategy for switching is the 
most suitable for high performance switching in the 
near future. 

Three techniques appear very commonly in the de-
sign and analysis of scalable high performance 
switches/routers. 

1. Parallelism 
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2. RGA algorithms 

3. Pigeon-hole principle 

When memory bandwidth becomes a bottle neck, 
try to use them in parallel. But the costs we pay for the 
benefits gained may be that sometimes we are in-
volved in a resource expansion and an additional 
scheduling algorithm which is complicate in most 
situations. 

RGA algorithms are mainly used in finding maxi-
mal matching in the bipartite graph, whether it repre-
sents the input-output matching pair or it represents 
the input-memory matching pair.  

Pigeon-hole principle is very useful in analyzing 
resource requirements by distributed many parties. We 
rely heavily on pigeon-hole principle in the memory 
requirement analysis in this survey. Even in pure space 
switching such as traditional Clos-network for circuit 
switching, pigeon-hole principle is a good tool [19] to 
use to find the necessary and sufficient resource re-
quirements. 

Although we pointed out the most possible archi-
tecture for future scalable high performance 
switches/routers, there are still many challenging 
problems remained, one of which is the scheduling 
algorithms for SMS packet switching architecture. 
These algorithms are hoped to have less complexity 
than those for scheduling packets in VOQ based 
crossbar architectures.  

Another possible direction is that for even higher 
speed switches which leave very limited time for the 
scheduler to find a maximal matching, we can only 
employ some heuristic algorithms. And maybe we 
need to modify the strict SMS architecture a little by 
adding some small buffers in the first and third stage. 
In this case, scheduling algorithms will become more 
interesting and challenging, concerning the role of the 
small buffers. 
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