
SETIT 2007
4rth International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 25-29, 2007 – TUNISIA

 - 1 -

Next Generation Internet High-Speed Switches and
Routers

Feng Wang and Mounir Hamdi

Hong Kong University of Science and Technology
fwang@cse.ust.hk
hamdi@cse.ust.hk

Abstract: Shared memory architecture for packet switches was normally thought to be unsuitable for building high perform-
ance switches/routers. The main reason lies in their perceived poor scalability. In particular, shared memory architectures are
typically used to build output-queued switches which are regarded as the best candidate to achieve optimal delay-throughput
performance. The current trend in router/switch design in both industry and academia favors crossbar-based architectures with
VOQ techniques because they provide a scalable solution. Although shared memory architectures seem to have the obvious
scalability disadvantage, crossbar-based architectures have their own intrinsic limitations, such as complex scheduling algo-
rithms and higher bandwidth allocation compared with shared memory architectures of the same capacity. In this survey, we
investigate the problem of shared memory design in detail and try to find alternatives to solve the scalability bottleneck. In the
end, we show that combining the crossbar and distributed shared memory architecture is the most promising method for build-
ing scalable high performance switches/routers that can provide quality-of-service support.
Key words: Shared Memory, Crossbar, Scalable, Space-Memory-Space switch architecture

1. Introduction
The basic problem in the core of networking is to

resolve contentions for shared resources. Usually,
contention is among distributed parties without prior
coordination. Switches are the basic building blocks
for interconnections. The packet switch is a multi-port
device that routes incoming packets from many input
ports to the proper output ports, while resolving con-
tentions (multiple packets simultaneously desiring to
exit through the same output port) by temporarily
buffering all packets but one, then scheduling their
departure at an appropriate later time.

For packet switches, memory strategy is very cru-
cial affecting the performance. The very embodiment
of resource contentions often happens in memories. In
the shared memory architecture, if memory bandwidth
is sufficiently large which means the resource pro-
vided is enough, contentions are removed naturally.
But if we only have limited memory bandwidth which
means the resource is limited, one possible way is to
use space division to provide some more resources,
which is the initial idea of the introduction of crossbar
based architecture.

Looking into the development of high performance
switches/routers, we can find there are three or four
generations of switch architectures existed in history:
[1]

1. Shared memory architecture, as illustrated in
Figure 1.

2. Shared medium architecture, as illustrated in
Figure 2.

3. Crossbar based switch architecture, as illus-
trated in Figure 3, which can be further cate-
gorized into input-queued (IQ), output-queued
(OQ) and combined-input-output-queued
(CIOQ) switches.

Shared
Memory

LC

LC

LC

LC

LC

LC

1

2

N

1

2

N

Input ports Output ports

Figure 1: Shared memory switch architecture

The fourth generation is all optical switch architec-
ture [2] which is current trend in this coming optic era
and out of the scope of this survey.

Contemporary researchers mainly focus on cross-
bar based architectures and design many correspond-
ing scheduling algorithms for them varying from sim-
ple to complicate. The CIOQ router is frequently re-
ferred as an abstract model for crossbar based routers:
at one extreme is input queuing, at the other extreme is
output queuing, and in between there’s a continuum of

SETIT2007

 - 2 -

performance as the speedup is increased from 1 to N
(where N is the number of inputs.) The most challeng-
ing task in crossbar based routers is to design efficient
and fast scheduling algorithms for them. There are
rich and growing theories and practical implementa-
tions for CIOQ routers, such as PIM [25], iSLIP [10],
DRRM [4], FIRM [3], static round robin (SRR) [15]
and so on …

S
hared M

edium

MEM

MEM

MEM

1

2

N

Figure 2: Shared Medium switch

MEM

MEM

MEM
M

E
M

M
E

M

M
E

M

Inputs
Outputs

Figure 3: Crossbar based switch

While researchers in academia favor crossbar
based architecture, shared memory architecture is still
commonly used in industry, with both IBM Corp. and
Applied Micro Circuits Corp. (AMCC) shipping since
1992 [5]. Most recently, a startup company called
Terachip released its main product – a 160 Gbps
switch fabric called TCF 16x10 based on shared
memory architecture [6]. As we can see, shared mem-
ory architecture does not fade away in high perform-
ance switches; instead it always finds its stand in all
the production lines from low to high ends.

So, what is the potential advantage of shared
memory architecture over crossbar based switches?
Switch fabric developed using a crossbar architecture
requires an off-chip scheduler to control the move-
ment of packets across the backplane [21]. In acade-
mia, we always assume we can devise some compli-
cated scheduling algorithms for crossbar to achieve
100% throughput and small delay, while in real im-

plementation we need hardware to accomplish these
algorithms. The scheduler chip has been one of the big
challenges for the crossbar approach [22]. Addition-
ally, the scheduler requires tight synchronization be-
tween the switch and line cards. While for the shared
memory architecture, the memory itself performs as a
switch. In fact, scheduling in shared memories is very
trivial and straightforward.

In the shared memory switch, the center of the
switch fabric is a shared memory that contains queues
for different output ports. Incoming packets are moved
into the shared memory fabric device as quickly as
possible [20]. Packets are then scheduled out of the
shared memory according to the order of their depar-
ture times.

However, shared memory architecture is criticized
as non-scalable. The basic reason is that, as shown in
Figure 1, the bandwidth requirement of the shared
memory is 2NR [29], which scales linearly with the
number of inputs N and the line rate R. We will look
into some techniques to make the shared memory
scalable with the number of inputs and even scalable
with the increasing line rate.

Crossbar and shared memory can both perform the
switching functions. It will benefit if combining them
together, taking the bandwidth and power advantages
from shared memory and scalability of crossbar archi-
tecture. The most suitable candidate is the multi-stage
architecture called space-memory-space (SMS)
switch. The basic idea is to make all the stages of this
architecture take part in the switching functions. Al-
though there have been much literature discussing
memory-space-memory (MSM) structure, one short-
age of this architecture is that the memories used are
not shared, thus losing the functions of switching.

The rest of this survey is organized as follows: We
first survey on the popular crossbar based architecture
with VOQ techniques. Then we discuss heavily on
shared memory architecture and how to make it prac-
tical. In the end, we combine crossbar and shared
memory to build scalable shared memory switch ar-
chitecture.

2. Crossbar based architecture
With the growing traffic demand of the Internet,

one challenging requirement facing the design of high
performance switches/routers is that they should be
scalable [24]. By saying to be scalable, we mean the
following:

1. The physical access time of each individual com-
ponent of the switches is independent on the
number of input ports.

2. The complexity of scheduling algorithms (if
needed) for switches does not scale with the num-
ber of input ports significantly.

It is obvious to see that the shared memory archi-
tecture as shown in Figure 1 is not scalable, since it
requires a memory bandwidth of 2NR which scales

SETIT2007

 - 3 -

linearly with the number of input ports. One possible
and most favorable solution by researchers is to use
crossbar as the switch fabric, as illustrated in Figure 3,
thus by dividing memories into two stages and making
them non-shared, memory bandwidth requirement can
be significantly reduced to 2R.

Figure 4: A configuration of a 4x4 crossbar switch-
ing fabric

Crossbar is normally made of N2 switching points.
Figure 4 shows a 4x4 crossbar switching fabric with
16 switching points. By allowing at most one switch-
ing point in each row and each column to be turned
on, any permutation of the input ports can be mapped
into one configuration of the crossbar. For example,
Figure 4 represents four input-output pairs of (1, 1),
(2, 4), (3, 2) and (4, 3).

Although resource contentions are now transferred
to the crossbar switching fabric, we can distribute the
contentions into N2 switching points to make sure no
components here operate faster than line rates R.
Therefore, it is possible to make crossbar based
switches scalable. If we regard the shared memory
architecture as time division switching, crossbar based
switching can be regarded as space division switching
[1], alleviating time resource contentions by using
more space resources.

2.1. IQ, OQ and CIOQ switches
Crossbar based switch architecture exhibits more

interesting properties. In general, crossbar based
switches can be categorized into input-queued (IQ)
switches, output-queued (OQ) switches and com-
bined-input-output-queued (CIOQ) switches, accord-
ing to the speedups needed in the crossbar switching
fabric.

Speedup is a common term used in crossbar
switches. By saying a speedup of S, we mean that the
crossbar can move up to S packets from each input
and deliver up to S packets to each output within a
time slot. [32]

If the crossbar operates at a speedup of 1 which
means at most one packet can reach one output port in
one time slot, packets can only queue in the input side,
we call this situation IQ switches. If the crossbar can
operate at a speedup of N which means the crossbar
can move up to N packets to one output port in one
time slot, packets can only queue in the output side,
and we call this situation OQ switches. In between the
two extreme situations, if the crossbar’s speedup is
great than 1 but less than N, we need buffers in both
input and output sides, and we call this situation CIOQ

switches.

2.2. OQ switches emulation
OQ switches have the optimal delay-throughput

performance [16]. In addition, nearly all the QoS
algorithms and AQM schemes assume an OQ switch
[33]. However, implementing a straightforward OQ
switch is very challenging since the crossbar needs to
run N times faster than the line rate which is nearly the
same situation as in shared memory architecture, thus
making crossbar based OQ switches only suitable for
edge routers with limited input ports and low line
rates. In order to make it scalable, the basic require-
ment is that the speed of the crossbar should be inde-
pendent on the number of input ports.

On the other hand, research shows that we can use
CIOQ switches to emulate OQ switches. By saying
emulating, we means that by feeding the same traffic
pattern to the ideal OQ switch and CIOQ switch with
a speedup of k (less than N and independent on N
hopefully), the output packet sequences of the two
switches are identical [12].

The well-known theorem in [18] shows that:

A speedup of 2-1/N is sufficient and necessary for
a CIOQ to emulate an OQ switch.

2.3. Crossbar architecture with VOQ technology
Although the theorem above is exciting and ele-

gant, it is impractical in hardware implementation.
First, it assumes a Push-In-Arbitrary-Out (PIAO)
queue which is very difficult to implement. Second,
the scheduling algorithm employs a stable-marriage-
problem algorithm [28] which has rather high com-
plexity. Normally, the more practical way in industry
is that we always prefer some simple First-In-First-
Out (FIFO) queues and scheduling algorithms with
less time complexity.

However, simple memory strategy such as FIFO
will limit the throughput to around 58% due to the
notorious HoL blocking problem [7]. To resolve this
problem, virtual-output-queue (VOQ) concept is pro-
posed as a common practice, as illustrated in Figure 5.
Rather than maintaining a single FIFO queue for all
cells, each input maintains separate queues for the
cells directed to different outputs [15]. VOQ technique
with proper scheduling algorithm can resolve the HoL
blocking problem thoroughly. Crossbar architecture
together with VOQs can abstract the switching prob-
lem into the problem of bipartite matching in graph
theory. For example, the switching situation in Figure
5 (a) can be represented using a bipartite graph in
Figure 5 (b). The scheduling algorithm is required to
find the maximal matching of the bipartite graph for
each round of packet transmission. For example, the
thick lines in Figure 5 (b) represent the maximal
match for the current traffic request.

Although VOQ technique solves the HoL blocking
problem, finding the maximal matching of the bipar-
tite graph is not a trivial task. From graph theory, the
most efficient centralized algorithm we know till now

SETIT2007

 - 4 -

has the time complexity of O(N2.5) [8], where N is the
number of linecards. In other words, the centralized
scheduling algorithms for crossbar based switches
with VOQs are not scalable, thus becoming the bottle-
neck of performance. In practice, researchers tend to
devise distributed algorithms to find the maximal
matching quickly. Most of their algorithms are heuris-
tic algorithms which are hoped to converge to the
maximal matching quickly, such as PIM, iSLIP,
DRRM, FIRM, SRR and so on…

VOQs Output Queues Bipartite Graph
(a) (b)

Figure 5: Bipartite graph representation of a traffic
request.

Request Grant Accept

1
23

4

1
23

4

1
23

4

1
23

4

1
23

4

Figure 6: First iteration of the RGA algorithms

The basic idea of all these heuristic algorithms is
that they try to behave in a distributed manner. We call
all these kinds of algorithms RGA (Request-Grant-
Accept) algorithms. A typical RGA algorithm runs as
shown in Figure 6.

• Request: First, Each input sends a request to every
output for which it has a queued cell.

• Grant: Secondly, if an output receives any re-
quests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the
highest priority element. The output notifies each
input whether or not its request was granted. The
pointer to the highest priority element of the
round-robin scheduler is updated using a scheme
which differs slightly in various algorithms.

• Accept: If an input receives a grant, it accepts the
one that appears next in a fixed, round-robin
schedule starting from the highest priority ele-
ment. The pointer to the highest priority element
of the round-robin schedule is updated according
to various algorithms.

Distribution always causes contention, especially
in the core of networking where all traffic aggregates.
All the algorithms stated above, such as RRM, iSLIP,
DRRM, SRR and FIRM, differ only in the schemes of
updating the pointers. The original RRM algorithm
suffers from pointer synchronization. So, its succes-
sors try alternative pointer updating schemes to avoid
contentions as much as possible. From the simulation
results, we know that FIRM has the best throughput
performance under normal traffic conditions [3].

3. Making shared memory architecture
practical

Shared memory architecture is common in the
early days of routers when the memory bandwidth is
much larger than the aggregate line rates [20]. The
basic structure of a shared memory switch is shown in
Figure 1. In shared memory architecture, scheduling is
simple because the memory performs switching natu-
rally. When a packet arrives, it is put into the shared
memory immediately. When it is time to leave, it
departs from the memory in time [29]. If the band-
width is large enough, nearly no scheduler is needed
here.

No scheduler or less complex scheduler is the most
attracting point of shared memory architecture. How-
ever, with the introduction of optical fibers, memory
bandwidth can not catch up with the increasing line
rates any more. As we have seen in the previous sec-
tion, a straightforward implementation of shared
memory architecture requires a bandwidth of 2NR
which scales linearly with the number of input ports.
We need to use some techniques to make the shared
memory architecture scalable. We first survey on the
techniques about cutting down the memory bandwidth
requirement to line rate R, then on techniques that
make memory even more scalable with the ever in-
creasing line rates.

3.1. Parallel memories
In order to make shared memory architecture scal-

able, we should make the memory bandwidth re-
quirement independent on the number of input ports.
The technique is to use parallelism. Actually, it is a
natural idea. If one piece of memory can not meet the
bandwidth requirements, we use multiple of them. The
basic idea is shown in Figure 7.

MEM #1

MEM #2

MEM #3

MEM #m

1

2

n

1

2

n

S S

S :scheduler
Figure 7: Parallel memories shared by all the inputs

In the Figure above, every single memory in the
central stage runs at the line rate, which means that in
one time slot there’s at most one read and on write
operation performed on one memory [18]. We use m
memories in parallel to distribute the memory band-
width requirements of 2NR. We defer the details of the
scheduler S to the next section. Now, we focus on the
memory requirement in this parallelism strategy.

When a packet comes in the input side scheduler, it
will find a free memory to be written in. By saying
free, we mean the following [13]:

• The memory is not written by other packets,
which are up to N-1 packets.

SETIT2007

 - 5 -

• The memory does not contain packets which will
depart at the same time as this incoming packet,
which are up to N-1 packets.

From the pigeon-hole principle, we can see that the
minimum number of memories required is

(N-1) + (N-1) + 1

= 2N-1.

This number is a little interesting. We have seen
that in the original straightforward shared memory
implementations, the number of queues (memories)
we need to maintain is N (the number of output ports).
So, we can say that if we use parallelism to distribute
the memory bandwidth requirements, we need a space
extension ratio of (2N-1)/N = 2-1/N, which is exactly
the same as the speedup needed for a CIOQ switch to
emulate an OQ switch. Note that a shared memory
switch is naturally an OQ switch.

Another advantage of this parallel memory tech-
nology is that we can distribute all the memories into
individual line cards [9]. This will make the switch
system maintenance more handy and flexible. We
remind here that although memories are distributed
into line cards, they are still shared by all the inputs
and outputs. That is to say, every memory in individ-
ual line cards is accessible by all the inputs and out-
puts.

Although parallel memories provide us a possible
way to scale the shared memory switches, the benefit
does not come for free. It is at the cost of a scheduling
algorithm. We need an additional scheduling algo-
rithm in the input side to dispatch packets into the free
memories when they arrive at the input ports. We will
discuss the algorithm in the next section.

The output side scheduler is somewhat easy to de-
vise. It just selects the packets which are in their de-
parture times and lets them go. Since packets have
resolved all of their contentions in the input side al-
ready, no scheduling algorithms are needed in the
output side.

3.2. Memory techniques scalable with line rates
As the line rate keeps increasing, buffers needed in

routers have to be sufficiently large, according to the
rule-of-thumb equation: B = RxRTT [30], where R is
the line rate, RTT stands for round-trip-time and B is
the buffer needed in the line card. In other words, we
need large and fast memories to keep up with the
buffering and switching requirements of high per-
formance routers. Current memory technologies are
mainly SRAM and DRAM. DRAM offers large capac-
ity to hold many packets, but its random access time is
too slow. On the other hand, SRAM is fast and might
be able to keep up with line rates, but are too small to
be economically viable for large packet buffers.

3.3. Combined SRAM and DRAM technologies
One possible and natural means is to use combined

SRAM and DRAM [11]. The main idea is to build a

memory hierarchy, where the memory bandwidth is
increased by reading (writing) multiple cells from (to)
DRAM memory in parallel. When packets arrive to
the switch they are stored temporarily in an SRAM,
waiting their turn to be written into DRAM. At the
appropriate time (determined by a memory manage-
ment algorithm), multiple packets are written into the
DRAMs at the same time [11]. We can think of the
memory hierarchy as a large DRAM containing a set
of FIFOs; the head and tail of each FIFO is cached in
a (possibly on-chip) SRAM as shown in Figure 8. The
SRAM is sized so that whenever the arbiter requests a
packet, it is always ready in the SRAMs so that it can
depart in time, regardless of the sequence of requests.

FIFO centers

Memory Management Alg.

FIFO tails FIFO heads

Large DRAM memory with large Access time T

Ingress SRAM
cache of FIFO tails

Egress SRAM
cache of FIFO heads

Arriving packets Departing packets

b packets

Arbiter

requests

1
2

Q

1
2

Q

1
2

Q

b packets b packets

write access
time = 2T

read access
time = 2T

Figure 8: Combined DRAM and SRAM

In particular, we have to determine how large the
SRAM needs to be, and find algorithms for deciding
when to replenish the SRAM cache so as to minimize
its size, or to minimize latency. In [34], the authors
proved that:

• An SRAM cache of size must be at least Q(b-
1)(2+lnQ).

With the Most Deficit Queue First memory man-
agement algorithm, an SRAM cache of size
Qb(2+lnQ) is sufficient, where Q and b are defined as
in Figure 8.

3.4. Parallel memories working with packet
stripping

Wavelength division multiplexing (WDM) is mak-
ing available long-haul fiber-optic links with very high
capacity. When the line rate keeps increasing and
exceeds the bandwidth of single memory, we need
other techniques to overcome this insufficiency. Still,
the philosophy of parallelism is used here. It is natural
to consider using a parallel packet switch (PPS) [12]
architecture comprised of multiple identical lower-
speed packet switches to form a high performance
router.

The incoming stream of packets is spread, packet-
by-packet, by a de-multiplexer across the slower
packet-switches as shown in Figure 9, then recom-
bined by a multiplexer at the output. As seen by the
arriving packets, a parallel packet switch (PPS) is a
single-stage packet switch; all of the buffering is con-
tained in the slower packet switches in the central
stage [12].

SETIT2007

 - 6 -

Figure 9: Parallel Packet Switch

In Figure 9, there are k low-speed packet switches
in the central stage. Each low-speed packet switch
operates at a fraction of the line rate R, for example,
R/k. If we use output-queued switch in the central
stage, it is desirable to make the whole system emulate
an OQ switch. Results in [31] show that it is theoreti-
cally possible for a PPS to emulate a FCFS output-
queued packet switch if each OQ switch operates at a
rate of approximately 2R/k. This simple result is
analogous to Clos’s theorem [19] for a three stage
circuit switch to be strictly non-blocking and also the
ratio of 2-1/N for parallel memories to emulate a
shared memory switch.

4. Scalable shared memory architecture
Shared memory architecture is the basic and

straightforward form to represent and resolve the
contentions in networks. The original simple imple-
mentation of shared memory switch, as illustrated in
Figure 1, is the most ideal switch and naturally an OQ
switch which does not need any scheduler. However,
it is intrinsically non-scalable. In philosophy, it aggre-
gates network resource contentions all in the memo-
ries and by providing sufficient memory (bandwidth)
resources it performs switching smoothly. When
memory bandwidth becomes a bottle neck, we need to
distribute the contention resolutions to other compo-
nents.

With current technology, packet switching is ac-
complished by two major methods. One is to use
shared memory, and the other is to use crossbar or
some other space-division switching technologies
[31]. However, most work in academia investigates in
either direction deeply and does not take both advan-
tages of shared memory and crossbar. For example, in
most shared memory architectures, they do not use
crossbar, and in most crossbar architectures, memories
are separated in the input and output sides [10] and not
shared, thus losing its intrinsic role of switching.

To build high performance switches/routers with
large number of input ports, scalability is among the
most important concerns [23]. In the previous section,
we surveyed techniques on how to make the memories
scalable. We left the scheduler dispatching packets
into the memories yet to be discussed. We survey the
schedulers to make shared memory architecture fully

scalable in this section.

4.1. Space-Memory-Space architecture
We can see that the scheduler S for shared memory

architecture in Figure 7 performs an Nx(2N-1) map-
ping basically. It is natural to use a Nx(2N-1) crossbar
to achieve this task. We know that for crossbar, since it
is scalable, every component will run at the line rate.

However, as stated in the previous section, we
need an additional algorithm to dispatch the incoming
packets into individual memories according to the two
free constraints we stated above. We encounter the
bipartite graph matching problem again. However, the
situation here is a little different from the one in the
VOQ scheduling in crossbar switches.

Figure 10: bipartite graph in the parallel shared
memory

Figure 10 is the bipartite graph representation of
the memory assignment needed here. A link between
input i and memory j means that memory j is compati-
ble for i with regards to the second free constraint,
which is to say, memory j does not contain packets
bearing the same departure time as packet i. We com-
pare it with the bipartite graph representation in VOQ
scheduling in Figure 5 (b) to find the essential differ-
ences.

• This graph is not symmetric, with N nodes in the
input side and 2N-1 node in the memories side.

• The degree of every input node i is at least N.

• The number of maximal matching is always equal
to N.

These three properties make efficient algorithms
for memory assignments a little easier to design. Even
for the heuristic distributed algorithms, they are
proved to be faster converging to the maximal match-
ing. The most valuable work was done by Amit et al.
[13].

First, they show that the matching can be com-
puted in O(log2N) time using a parallel computer on a
CREW PRAM. [13]

Second, they also follow the same three stage
paradigm of Request-Grant-Accept (RGA) to design

1
2
3

N

1
2
3

2N-1

Inputs Shared Memories

SETIT2007

 - 7 -

some randomized and scalable algorithms. Further-
more, by pipelining, they proved that their algorithm
will converge in O(log*N) rounds with each round
running at a constant time, which is extremely fast
and, as they claimed, near optimal[14].

Shared memory sandwiched by two stages of
crossbar is usually referred as Space-Memory-Space
(SMS) architecture. It has the most distinctive per-
formance since all of its parts take part in the role of
switching. While in some other multi-stage architec-
tures, such as Memory-Space-Memory (MSM), the
memories employed by them are not shared, thus
losing the function of switching.

4.2. Load-balanced packet switches
SMS architecture has many variants, among which

there is a recent famous architecture called load-
balanced birkhoff-von Neumann switch [17], as illus-
trated in Figure 11. It uses N VOQ memories in the
central stage rather than 2N-1 FIFO queues, and most
creatively, they do not employ any real scheduler in
both crossbar sides. They just let them act in a prede-
fined iteration way. For example, every input just
sends packets to the central shared memory in a
round-robin rotating fashion. The memories they use
and the packet scheduling they employ are obviously
scalable. Most surprisingly, they prove that this archi-
tecture can achieve 100% throughput in most traffic
conditions. Although they start with an initial motiva-
tion of pre-process the traffic with a load balancing
scheme, it is really a variant of scalable shared mem-
ory architecture.

Load
Balancing

1

N

1

N

Birkhoff
von-Neumann

Switch

Figure 11: Load-balancing Birkhoff-von Neumann
switch

4.3. Central Buffered Clos-network
Crossbar switching technology is scalable, but the

cost of crossbar is very expensive. Normally, it is at
the order of O(N2). This will become even more costly
when N is extremely large, for example, in the net-
work Point-of-Presences (POP). Some work has been
led to deal with the economic scalability of the first
and the third stage of the SMS architecture stated
above. It employed ideas from Clos-network [19],
using modular design philosophy.

In Figure 12, we show a Central Buffered Clos-
network (CBC) switch [16]. This architecture resem-
bles traditional Clos-network except that the central-
stage switches are split into two identical copies with
memories linking each port pair. Note that the memo-
ries here are fully shared by all the inputs and outputs.

When a packet arrives in one of the incoming
ports, it is dispatched into one compatible memory
immediately. By saying to be compatible, we mean

exactly the same free constraints as stated in the pre-
vious parallel memory architecture.

1

n

1

k

1

k
1

n

1

n

1

n

1

k
1

k

1

k

1

k
1

k

1

k

1

n

1

n

Memory
Memory

Memory

Memory
Memory

Memory

Memory
Memory

Memory

Memory
Memory

Memorym m

kk
nXm

kXk kXk

mXn

Figure 12: Central Buffered Clos-network switch

Mapping this CBC switch architecture into the
SMS architecture, we can see that it uses a modular
Clos-network as the first and third space-division
switching part, thus make it cost effective and more
scalable. Using the same pigeon-hole principle, the
authors analyzed that the space extension ratio of m =
2 – 1/k is sufficient for CBC to emulate an FCFS out-
put-queued switch, where k is the number of the cen-
tral modules needed in CBC architecture and the num-
ber of total input ports N = mxk.

The number 2 – 1/k is another interesting Figure
we should pay attention to since it is slightly smaller
than 2 – 1/N. The smaller extension ratio is achieved
by using a multi-stage architecture, compared with the
single stage of switching we surveyed in previous
sections.

5. Conclusions and future work
Shared memory architecture for packet switches

was common in the early days of networking. With the
increasing of carrier’s line rates, researchers changed
their focus to many space-division switching tech-
nologies, such as crossbar based architecture, since
shared memory architecture was likely to be non-
scalable. However, crossbar based architecture is far
from perfect for packet switching. Scalable scheduling
algorithms achieving 100% throughput and less delay
for crossbar are very challenging to obtain. Usually,
we can only afford some heuristic algorithms which
are only suitable in some benign traffic conditions.

In this survey, crossbar based architecture and its
corresponding scheduling algorithms are first investi-
gated. After that, we turn to shared memory architec-
ture and explored various techniques to make shared
memory architecture practical and scalable. In the end,
we identified current switch design trends that com-
bined space and memory strategy for switching is the
most suitable for high performance switching in the
near future.

Three techniques appear very commonly in the de-
sign and analysis of scalable high performance
switches/routers.

1. Parallelism

SETIT2007

 - 8 -

2. RGA algorithms

3. Pigeon-hole principle

When memory bandwidth becomes a bottle neck,
try to use them in parallel. But the costs we pay for the
benefits gained may be that sometimes we are in-
volved in a resource expansion and an additional
scheduling algorithm which is complicate in most
situations.

RGA algorithms are mainly used in finding maxi-
mal matching in the bipartite graph, whether it repre-
sents the input-output matching pair or it represents
the input-memory matching pair.

Pigeon-hole principle is very useful in analyzing
resource requirements by distributed many parties. We
rely heavily on pigeon-hole principle in the memory
requirement analysis in this survey. Even in pure space
switching such as traditional Clos-network for circuit
switching, pigeon-hole principle is a good tool [19] to
use to find the necessary and sufficient resource re-
quirements.

Although we pointed out the most possible archi-
tecture for future scalable high performance
switches/routers, there are still many challenging
problems remained, one of which is the scheduling
algorithms for SMS packet switching architecture.
These algorithms are hoped to have less complexity
than those for scheduling packets in VOQ based
crossbar architectures.

Another possible direction is that for even higher
speed switches which leave very limited time for the
scheduler to find a maximal matching, we can only
employ some heuristic algorithms. And maybe we
need to modify the strict SMS architecture a little by
adding some small buffers in the first and third stage.
In this case, scheduling algorithms will become more
interesting and challenging, concerning the role of the
small buffers.

REFERENCES

[1] F. A. Tobagi, Fast packet switch architectures for
broadband integrated services digital networks,
in proceedings of IEEE, vol. 78, issue 1, Jan.
1990

[2] X. Li and M. Hamdi, On Scheduling Optical
Switches with Reconfiguration Delay, IEEE Jour-
nal on Selected Areas in Communications
(JSAC), vol. 21, Issue 7, 1156-1164, Sep 2003.

[3] D. N. Serpanos and P. I. Antoniadis, FIRM: a
class of distributed scheduling algorithms for
high speed ATM switches with multiple input
queues, in Proc. IEEE INFOCOM, 2000, pp. 548-
555.

[4] H. J. Chao, J. S. Park, Centralized contention
resolution schemes for a large-capacity optical
ATM switch, in Proc. of the IEEE ATM work-
shop, 1998.

[5] URL:
http://www.lightreading.com/document.asp?doc_i
d=25989

[6] URL:
http://www.commsdesign.com/story/OEG2003020
3S0062

[7] M. Karol, M. Hluchyj, and S. Morgan, Input
versus output queuing on a space division switch,
IEEE Trans. Commun., vol. 35, pp. 1347-1356,
1988

[8] J. E. Hopcroft and R. M. Karp. An O(N2.5) Algo-
rithms for Maximum Matching in Bipartite
Graphs, Society for Industrial and Applied
Mathematics Journal of Computation, vol. 2 pp.
225-31, 1973

[9] S. Iyer, R. Zhang, and N. McKeown, Routers with
single stage of buffering, in proceedings of SIG-
COMM, 2002

[10] N. McKeown, The iSLIP scheduling algorithm
for input queued switches, IEEE/ACM Transac-
tions On Networking, vol. 7, no. 2, April, 1999

[11] S. Iyer and N. McKeown, Techniques for fast
shared memory switches, Stanford HPNG techni-
cal report TR01-HPNG-081501

[12] S. Iyer, A. Awadallah, and N. McKeown, Analysis
of a packet switch with memories running slower
than the line-rate, in proceedings of IEEE Info-
com, 2000

[13] A. Prakash, S. Sharif and A. Aziz, An O(log2N)
parallel algorithm for output queuing, in proceed-
ings of IEEE INFOCOM, 2002

[14] A. Aziz, A. Prakash and V. Ramachandran, A near
optimal scheduler for switch-memory-switch
Routers, ACM Symposium on Parallelism in Al-
gorithms and Architectures, 2003

[15] Y. Jiang and M. Hamdi, A fully desynchronized
round-robin matching scheduler for a VOQ
packet switch architecture, in proceedings of
IEEE Workshop on High Performance Switching
and Routing, 2001, pp. 407-411

[16] F. Wang and M. Hamdi, Analysis on the central-
stage buffered Clos-network for packet switching,
to appear in proceedings of IEEE ICC, 2005

[17] C. S. Chang, D. S. Lee and Y. S. Jou, Load bal-
anced Birkhoff-von Neumann switches, part I:
one-stage buffering, Computer Communications
25 (2002) 611-622

[18] S. T. Chuang, A. Goel, N. McKeown and B.
Prabhakar, Matching output queuing with a com-
bined Input/Output-queued switch, IEEE Journal
on Selected Areas in Communications, vol. 17,
no. 6, June 1999

[19] C. Clos, A study of non-blocking switching net-
works, Bell Systems Technical Journal, pp. 406-
424, March 1953

[20] A. Singhal and R. Jain, Terabit switching: a sur-
vey of techniques and current products, Computer
Communications 25 (2002) 547-556

[21] H. J. Chao, C. H. Lam and X. Guo, Fast ping-
pong arbitration for input-output queued packet
switches, Int. J. Commun. Syst. 2001, 14: 663-
678

[22] K. Lee, S. J. Lee, and H. J. Yoo, A Distributed
On-Chip Crossbar Switch Scheduler for On-Chip
Network, Custom Integrated Circuits Conference
(CICC), September, 2003

SETIT2007

 - 9 -

[23] H. J. Chao, Next generation routers, in proceed-
ings of the IEEE, vol. 90, pp. 1518-1558, 2002.

[24] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M.
Horowitz, O. Solgaard, and N. McKeown, Scal-
ing Internet routers using optics, in proceedings
of SIGCOMM 2003

[25] T. Anderson, S. Owicki, J. Saxie and C. Thacker,
High speed switch scheduling for local area net-
works, ACM Trans. Comput. Syst., vol. 11, no. 4,
pp. 319-352, Nov. 1993

[26] B. Prabhakar and N. McKeown, On the speedup
required for combined input and output queued
switching, Automatica, vol. 35, 1999

[27] I. Stoica and H. Zhang, Exact emulation of an
output queuing switch by a combined input and
output queuing switch, in proceedings of
IEEE/IFIP IWQoS, 1998, pp. 218-224

[28] D. Gale and L. S. Shapley, College admissions
and the stability of marriage, American Mathe-
matical Monthly, vol. 69, pp. 9-15, 1962

[29] H. J. Chao, C. H. Lam and E. Oki, Broadband
Packet Switching Technologies: A practical guide
to ATM switches and IP routers, Chapter 4, pub-
lished by Wiley

[30] G. Appenzeller, I. Keslassy and N. McKeown,
Sizing router buffers, in proceedings of SIG-
COMM 2004

[31] S. Iyer and N. McKeown, Making parallel packet
switches practical, in proceedings of IEEE IN-
FOCOM 2001

[32] M. Yang and S. Q. Zheng, An efficient scheduling
algorithms for CIOQ switches with space-division
multiplexing expansion, in proceedings of IEEE
INFOCOM 2003

[33] S. Floyd and V. Jacobson, Random Early Detec-
tion gateways for congestion avoidance,
IEEE/ACM Transactions on Networking, August
1993

[34] S. Iyer, R. R. Kompella and N. McKeown, Analy-
sis of a Memory Architecture for Fast Packet
Buffers, IEEE Workshop on High Performance
Switching and Routing, May 2001

